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Surface instability of a gel disc in swelling
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Abstract. The swelling of a soft disc made of polymeric gel and attached to a fixed substrate is modeled
using a variational method in nonlinear elasticity. A linear stability analysis is performed to detect the
onset of a surface instability. An exact solution of the perturbed disc is found, and both the threshold
values of the growth rates and the surface morphology are derived analytically.

PACS. 46.32.+x Continuum mechanics of solids - Static buckling and instability – 87.10.Pq Biological
and medical physics - Elasticity theory – 83.10.Bb Rheology - Kinematics of deformation and flow

1 Introduction

Since the pioneering work of Tanaka et al. [1], the interest
of soft matter physicists on the mechanical instabilities of
polymeric gels has flourished. As underlined in the exten-
sive review of Dervaux and Ben Amar [2], an incredible
amount of articles has been published in the last decades
on this subject, lying at the crossroad between several
scientific communities. In fact, polymeric gels have been
taken as reliable system models not only for studying the
mechanisms of pattern formation in living tissues [3], but
also for guiding the fabrication of micro-patterned sur-
faces [4, 5]. Novel experimental techniques have allowed a
better comprehension of the dynamics of pattern forma-
tion in gels, attracting over the last years considerable at-
tention from a theoretical viewpoint, especially concerning
the buckling transition towards surface folds or creases [6].

2 The model

The aim of this work is to investigate the instability prop-
erties of a polymeric gel using the same experimental con-
ditions originally studied by Tanaka et al. [1]. For this
purpose, a disc made of a soft polymeric gel is initially
considered having thickness H, being enclosed in a Petri
dish of radius R0. Choosing a polar coordinate system
(R,Θ,Z) in the reference configuration Cr, the disc is
attached at Z = 0. The gel undergoes a generic homoge-
neous swelling process, which is modeled using a virtual
grown configuration Cg such that, in absence of geomet-
rical constraint, its reference position X at time t is given
by R(t) = gr(t)R(0) and Z(t) = gz(t)Z(0), where gr and
gz are the growth rates in the radial and axial directions,
respectively.
Considering that the soft gel is attached to the bottom
substrate and radially confined at the disc side, the swollen
position x in the spatial configuration Cs is given by

r(t) = R(0) and z(t) = g2rgz(t)Z(0), so that the volume
of the disc increase of a factor J = g2rgz. Assuming a
neo-Hookean elastic behavior for the gel, the total elastic
energy Ev reads:

Ev = 2πJ

∫ ∫ [µ
2
(λ2

r + λ2
θ + λ2

z − 3)

−p(λrλθλz − 1)]RdRdZ (1)

where λi (i = r, θ, z) are the elastic strains, µ is the shear
modulus and p is the Lagrange multiplier arising from
the incompressibility constraint, which acts like an hydro-
static pressure. The principal components of the Cauchy
stress tensor inside the disc read σij = (µλ2

i − p)δij , with
δij being the Kronecker delta, and the equilibrium equa-
tion reads:

rσrr,r + σrr − σθθ = 0 (2)

where comma denotes differentiation. A basic swollen so-
lution of Eq.(2) is given by λr = λθ = 1/gr, λz = g2r , rep-
resenting an homogeneous deformation of the elastic disc.
From the stress-free boundary condition σzz(H) = 0 one
gets p = g4r , so that the swollen gels is subjected to a equi-
biaxial stress state with σrr = σθθ = (g−2

r − g4r), which is
compressive in the case of swelling (i.e. for gr > 1).
Having the aim to study the pattern formation at the free
surface of the disc, it is now useful to perform a linear
stability analysis of this basic swollen configuration. In-
stead of using the classical method of incremental elastic
deformations, a variational formulation is used for solving
exactly the incompressibility constraint. Assuming that
the generic perturbation is plane and axial-symmetric,
it is possible to define a canonical transformation using
a virtual configuration Cv, made of mixed coordinates
(r, Z, θ) [7]. In fact, an incompressible mapping can be
defined using a non-linear stream function Ψ(r, Z), as fol-
lows:

R2 = 2 Ψ,Z; z =
JΨ,r

r
; Θ = θ (3)
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According the volume-preserving mapping in Eq.(3), the
elastic deformation gradient Fe = ∂x/∂X : Cg → Cs can
be written as a function of the stream function, being:

Fe =
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grΨZr
− Ψ,ZZ

gzΨZr
0

J
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(
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)
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0

0 0 r
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(4)

Using a canonical transformation there is no need to intro-
duce a Lagrange multiplier for imposing the incompress-
ibility constraint, and the elastic energy in Cv takes the
following simplified form:

Ev = 2πJ

∫ R0

0

∫ H

0

µ

2
(F e

αβF
e
βα − 3)Ψ,Zr drdZ (5)

where Einstein’s summation on the repeated indices β, α =
(r, Z, θ) is assumed. Furthermore, a surface energy Es ex-
ists at the free surface of the gel, which reads:

Es = 2πγ

∫ R0

0

r

√
1 +

(
Ψ,r

J r

)2

,r

dr (6)

where γ is the surface tension at the free interface of the
polymeric gel, so that we can define a characteristic cap-
illary length of the disc as Lcap = γ/µ. In general, such a
surface energy also accounts for the soft skin created by
oxygen inhibition of gelification in hydrogels.
Using a variational approach, the boundary value problem
in nonlinear elasticity can be transformed into the mini-
mization of the total potential energy of the swelling gel,
such that (δEv + δEs) = 0. Considering that the energy
terms are function of the stream function and its partial
derivatives, the elastic equilibrium is given by the follow-
ing volumetric Euler-Lagrange equation:(

∂Ev

∂Ψ,lm

)
,lm

−
(
∂Ev

∂Ψ,k

)
,k

= 0 (7)

where the indices mean either r or Z. Two surface integrals
represent the Euler-Lagrange conditions at the free surface
Z = H for arbitrary variations on Ψ and on Ψ,Z , and read:

∂Ev

∂Ψ,Z
−

(
∂Ev

∂Ψ,ZZ

)
,Z

−
(

∂Ev

∂Ψ,rZ
+

∂Es

∂Ψ,r

)
,r

+

(
∂Es

∂Ψ,rr

)
,rr

= 0

(8)
∂Ev

∂Ψ,ZZ
= 0 (9)

3 Linear stability analysis

In order to perform a linear stability analysis of the swelling
disc, let me consider a perturbation of the basic axial-
symmetric solution by imposing:

Ψ(r, Z) =
r2Z

2
+ ϵ · Φ(r, Z) (10)

Fig. 1. Perturbed shape of the disc from Eq.(13). Parameters
are set at ϵ=0.02, JH = 0.5, R0 = 1, u(H) = 3/2, u,Z(H) = 1,
and kr = 16.4706.

where |ϵ| ≪ 1 is the small amplitude of the perturba-
tion defined by the infinitesimal stream function Φ(r, Z).
Therefore, the bulk equilibrium equation for the perturbed
state is given by substituting Eq.(10) in Eq.(7), and reads:

3J2g2z(−Φ,r + rΦ,rr) + r2
(
J2g2z(−2Φ,rrr + rΦ,rrrr)

−(1 + g6r)g
2
z(Φ,ZZr − rΦ,ZZrr) + g2rrΦ,ZZZZ

)
= 0(11)

A solution of Eq.(11) can be found by searching for a
separate variable form of the stream function. Recalling
that:

r(rIn,r),r + (r2 − n2)In = 0 (12)

where In = In(r) indicates the Bessel function of the first
kind of order n, it is possible to simplify Eq.(11) assuming
that Φ(r, Z) = rI1(krr) · u(Z). In this case, using Eq.(3)
the imposed perturbation at first order in ϵ reads:

r = R−ϵI1(krr)u,Z(Z); z = J(Z+ϵkrI0(krr)u(Z)) (13)

Recalling the boundary condition at the disc side, being
r(t) = R0, from Eq.(13) kr must belong to the discrete
set of positive reals such that I1(krR0)=0. The shape of
such a perturbed configuration of the gel disc is depicted
in Fig. 1. Using Eq.(13), we can write the equilibrium
condition in Eq.(11) as an ordinary differential equation
on u(Z), which reads:

g2ru,ZZZZ − (1 + g6r)g
2
zk

2
ru,ZZ + J2g2zk

4
ru = 0 (14)

and whose solution is given by:

u(Z) = a1e
λ1Z + a2e

−λ1Z + a3e
λ2Z + a4e

−λ2Z (15)

where λ1=krgz/gr, λ2=Jkr, and a1, .., a4 are constant pa-
rameters that must be determined through the four bound-
ary conditions. Two of them are imposed by Eq.(13) con-
sidering the presence of the fixed bottom substrate, and
read:

u(Z) = 0; u,Z(Z) = 0 at Z = 0 (16)
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The two other boundary conditions are given by the Euler-
Lagrange surface terms in Eqs.(8, 9), which can be sim-
plified as follows:

Jg4ru,ZZZ − J2gz(1 + 2g6r)k
2
ru,Z − Lcapk

4
r = 0 (17)

u,ZZ + J2k2ru = 0 (18)

which apply for Z = H, and correspond to vanishing in-
cremental stresses at the free surface. Using the solution
given by Eq.(15) with the four boundary conditions in
Eqs.(16-18), we get the following expression for the incre-
mental displacement:

u(Z) = sinh(λ1Z)− sinh(λ2Z)

g3r
− (cosh(λ1Z)

−cosh(λ2Z))
(1 + g6r) sinh(λ1Z) + 2g3r sinh(λ2Z)

(1 + g6r) cosh(λ1Z)− 2g6r cosh(λ2Z)
(19)

whilst the dispersion relation for the disc instability is
given by:

g3r sinh(λ1H)
[
(g6r − 1)krLcap cosh(λ2H)

−g6rg
4
zA1 sinh(λ2H)

]
− 4g4rJ

4(1 + g6r) + cosh(λ1H) ·[
g6rg

4
zA2 cosh(λ2H)− (g6r − 1)krLcap sinh(λ2H)

]
= 0(20)

with A1 = (1 + 6g6r + g12r ) and A2 = (1 + 2g6r + 5g12r ).

4 Results and discussion

Neglecting the presence of a surface energy and setting
Lcap = 0 in Eq.(20), one gets the classical surface in-
stability described by Biot [8]. In fact, a radial growth
threshold g∗r exists when kr → ∞, given by the condition
(A2 − g3rA1) = 0, and reads:

g∗r =
3

√
1 +

(54− 6
√
33)

1
3

3
+

(18 + 2
√
33)

1
3

3
2
3

∼ 1.5011 (21)

Fig. 2. Solution of the dispersion relation in Eq.(20) given
as the radial growth rate gr versus the wavenumber kr. The
results are obtained setting gz = gr and H = 1, and depicted
for the labeled values of Lcap.

which is the real root of (−1− g3r − 3g6r + g9r) = 0.
Interestingly, this surface instability mechanism only de-
pends on the radial growth of the disc, and the critical
value g∗r is the same found after sinusoidal perturbation of
a square gel layer under biaxial compression [9]. The prob-
lem of having a vanishing wavelength for the Biot surface
instability is overcome when taking into account the pres-
ence of a surface tension. As shown in Figure 2 in the case
of isotropic growth (gZ = gr), setting a non-zero Lcap in
Eq.(20) one gets not only an increased growth threshold,
if compared to Eq.(21), but also a finite critical wavenum-
ber k∗r which determines the morphology of the perturbed
disc. Solving numerically Eq. (20), the threshold value for
the growth rate and the wavelength Λ = 2π/k∗r of the
surface instability are depicted in Figure 3 as a function
of the capillary ratio Lcap/H. Although such results are
shown as continuous curves for the sake of simplicity, it is
important to recall that an instability can only occur for
the discrete values of k∗r such that I1(k

∗
rR0)=0, in order

to respect the boundary condition at the disc side.
In particular, we find that increasing the surface tension
one always obtains a higher instability threshold, whose
value is dependent on the growth anisotropy ratio gz/gr.
Moreover, taking the limit Lcap/H ≪ 1, one finds log-
arithmic corrections to the Biot formula of the growth

Fig. 3. (Top) Threshold value of radial growth rate gr versus
the capillary ratio Lcap/H. (Bottom) Wavelength Λ = 2π/kr of
the surface instability as a function of Lcap/H. The curves are
depicted for the labeled values of anisotropic growth (gz/gr=
0.5, 0.75, 1, 1.25, 1.5)
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threshold and critical wavenumber, as reported in previ-
ous theoretical and experimental studies [9, 10].
For higher ratios Lcap/H, the wavelength Λ of the sur-
face pattern is finally about the order of the thickness of
the gel disc, in accordance with the original observations
of Tanaka et al. [1], as well as with more recent experi-
ments [11].
Although the analysis of the nonlinear regime of the disc
instability if out of the scopes of this study, it is useful to
add a final consideration about the nature of the bifurca-
tion of the growing disc. In particular, from Eqs.(5,6) the
series expansion of the total potential energy Ep at the
leading orders in ϵ reads:

Ep = Ev + Es =
(
µ
2 (2− 3g2r + g6r)gzH + γ

)
R2

0/2

+ϵ2/2 · E2 + ϵ3/3 · E3 + ϵ4/4 · E4 (22)

where E2, E3, E4 are integration terms [12]. At a weakly
non-linear regime the amplitude ϵ of the perturbation can
be fixed by minimizing the potential energy of the disc,
so that δEp/δϵ = 0. Therefore, the presence of a non-zero
term E3 in Eq.(22) indicates that the bifurcation of the
elastic stability is more likely subcritical, and the ampli-
tude will be fixed by E2 + E3ϵ + E4ϵ

2 = 0. The subcrit-
icality of the bifurcation would explain the hysteresis in
the crease formation observed experimentally. In fact, the
onset, the morphology and the cycle-to-cycle memory of
surface folds in compressed hydrogels seem to be domi-
nated by the distribution of heterogeneous defects [13].

5 Conclusion

In summary, an analytical solution of the linear stabil-
ity analysis for the constrained swelling of a gel disc has
been derived. Performing an axial-symmetric perturba-
tion, both the total volume change and the growth anisotropy
are found to control the onset of the instability. The ratio
between the capillary length Lcap and the thickness H of
the disc is found to determine the wavelength of the sur-
face pattern. Further nonlinear treatments are needed to
explain the observed transition from simple surface undu-
lations to both tree-like and honeycomb structures [14]. A
deeper understanding of the mechanisms regulating pat-
tern formation in swelling polymeric materials is of ut-
most importance for designing smart materials with tun-
able surface properties.
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